GPS-AG50 CAN Output Description

The document describes the messages that are output by the GPS AG-50 module on its CAN bus.
The CAN IDs assume that the module is using its default setting for CAN base ID.
All multi-byte values are, of course, in big-endian format.

CAN ID 680h - GPS position

| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Byte 8

CAN ID 681h - GPS course, speed and altitude

| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |
| :--- | :--- | :---: | :---: | :---: | Byte 6 | 4 |
| :--- |

CAN ID 682h - GPS time and date

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte $7 \quad$ Byte 8
Day of month as an unsigned 8-bit value	Month of year as an unsigned 8-bit value	Year of century as an unsigned 8-bit value	Hour of day as an unsigned 8-bit value.	Minute of hour as an unsigned 8-bit value.	Second of minute as an unsigned 8-bit value.	Thousandths of a second as an unsigned 16 -bit value

CAN ID 683h - Accelerometer

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6

CAN ID 684h - Gyroscope

Byte $1 \quad$ Byte 2	Byte $3 \quad$ Byte 4	Byte $5 \quad$ Byte 6	Byte $7 \quad$ Byte 8
Roll in tenths of a degree per second as a signed 16 -bit integer. Positive values indicate roll toward the right, negative to the left.	Pitch in tenths of a degree per second as a signed 16 -bit integer. Positive values indicate upward pitch, negative downward.	Yaw in tenths of a degree per second as a signed 16-bit integer. Positive values indicate yaw to the right, negative to the left.	Gyroscope temperature in tenths of a degree C as a signed 16 -bit value

CAN ID 685h - GPS Status information

| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 |
| :--- | :--- | :--- | :--- | :--- | Byte 6 | (|
| :--- |

CAN ID 690h to 697h - Satellite statistics frames (version 2.91 only)

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
Satellite ID or 0 if no data present	Elevation in degrees	Azimuth in degrees divided by 2	$\mathrm{C} / \mathrm{N}_{0}$ in dB or FFh if satellite not tracked	Satellite ID or 0 if no data present	Elevation in degrees	Azimuth in degrees divided by 2	$\mathrm{C} / \mathrm{N}_{0}$ in dB or FFh if satellite not tracked

CAN ID 688h - Satellite statistics frames (versions 2.92 to 2.94)

Byte 1	Byte 2Byte b	Byte 3	Byte 4
Satellite ID	Elevation in degrees	Azimuth in degrees divided by 2	$\mathrm{C} / \mathrm{N}_{0}$ in dB or FFh if satellite not tracked

CAN ID 688h - Satellite statistics frames (version 2.95)

Byte 1	Byte 2Byte b	Byte 3	Byte 4
Bit 7: satellite in use Bits 6-0: satellite ID	Elevation in degrees	Azimuth in degrees divided by 2	$\mathrm{C} / \mathrm{N}_{0}$ in dB or FFh if satellite not tracked

